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D103. Coupled pendulums – small angle approximation 

 

Aim: Examination of oscillations of two coupled physical pendulums  

 examination of relation between the frequency of oscillations of a simple pendulum and its 

moment of inertia, determination of the centre of gravity.  

 examination of motion of two identical pendulums coupled through a spring  

 examination of two different pendulums coupled through a spring. 

 

Problems: 

 equation of motion for a physical pendulum, frequency of free oscillations, relation between the 

moment of inertia of a body and the frequency of its free oscillations. 

 normal oscillations, equations describing normal oscillations for a system of two coupled 

pendulums, sum of normal oscillations, beats.  

 

Experimental tools needed: 

 two physical pendulums to which weights can be attached. A spring for coupling the two 

pendulums.  

 potentiometers connected to each pendulum at the pivot points, that return voltage as a function of 

angular position of each pendulum. 

 interface permitting measurement of voltage on the potentiometer by a computer. 

 LabView environment through which it is possible to connect with the measuring interface and 

perform measurements. The voltage at particular potentiometers is read via the function Odczyt.vi 

or in the more advanced form – via the serial communication with the measuring interface.  

 

1. Free oscillations of physical pendulum. 
 

Most often studied is a mathematical pendulum which is a simplified version of a physical one in 

which the bob performing oscillations is assumed to be a point of mass and the rod (or cord) on which 

the bob swings is assumed to have no mass. In this experiment the physical pendulums are used, see Fig. 

1.  
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Figure.1. A physical pendulum used in the experiment. 

 

The difference between a physical and mathematical pendulums is that the physical one is a 

rigid body able to rotate about the pivot point which is other than the centre of gravity of this body. To 

describe its motion it is necessary to take into account the moment of inertia Iof the pendulum and 

position of its centre of gravity with respect to the pivot point. The Newton’s second law of motion for 

rotations takes the form: 

 

dt

Ld
M



       (1) 

 

where M is the net moment of force acting on the pendulum, while L is the moment of momentum  

related to the moment of force applied to the pendulum.  L is related to the moment of inertia I of the 

rotating body through the equation: 

 




IL         (2)

 

where  is the vector of angular velocity with the same direction and sense as M. The above equations 

can be applied to physical as well as mathematical pendulums. The difference appears in determination 
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of M. For both types of pendulum, the only source of the moment of force is the gravity. For the 

mathematical pendulum the moment of force is: 

  

)sin()sin(  mglmglFrM G 


     (3)

 

where m is the mass of the body and l is the distance from the pivot point or the length of the pendulum. 

The sign minus means that, similarly as for a spring, the moment of force acting on the pendulum and 

related to gravity is directed so that to counteract the displacements and return the pendulum towards the 

equilibrium position.  

In the physical pendulum, the gravitation force acting on each fragment of the rigid body is the 

same, while the distances between each fragment and the pivot point are different. Therefore, the 

moment of force acting on the pendulum must be determined as a net moment of all moments acting on 

infinitesimally small fragments miof the body. The net moment of force is equal to the sum of all 

component moments  

 

     sinsin)sin( DdmrgdmgrMdM iiiiig


    (4) 

 

where ri is the distance of mass dmi from the pivot point, D is the directing moment of the pendulum. 

Taking into account that 
dt

d
  , and assuming small amplitude , which permits assuming that sin() 

≈ , and combining equations (1), (2) and (4) we get the equation of motion for a single physical 

pendulum:  

 

0
2

2

 


I

D

dt

d
       (5)

 

Please note that the amplitude is the only parameter varying in time that is needed for description of motion 

of a given pendulum. The solution to the differential equation (5) takes the form: 

 

)cos( 00   t        (6) 
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where 
I

D p
0 is the frequency of free oscillations of the pendulum, 0 

is the amplitude that can be 

found from the angular frequency (
dt

d
) after having assumed appropriate initial conditions (note that 

angular frequency differs from the pendulum eigenfrequency).  is the initial phase of the oscillation.  

Determination of the moment of inertia of the pendulum which is a rod with holes, presented 

in Fig. 1, is not an easy task, however, in approximation we can neglect the holes and find I for a 

rectangular rod of the dimensions a, b and c. Moment of inertia Iś of such a rod is measured with respect 

to the axis of rotation passing through its centre of mass and parallel to the side c of the rod and can be 

found from the equation: 

 

  
 


2

2

2

2

22

0
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1
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a

a

b

b

c

pś bamdxdydzyxI       (7)

 

where is the density of the material of the rod. In our experiment the rod oscillates about the pivot point at a distance r 

from the centre of the rod mass. The centre of mass is in the middle of the uniform rod, so r can be 

measured and using the Steiner theorem the moment of inertia of the rod Ip with respect to the axis 

passing through the pivot point (black dot in Fig. 1). 

 

2

śpI I mr         (8) 

 

A cylinder weight can be attached to the rod at different sites. If it is attached, then also its moment of 

inertia should be added to the total moment of inertia of the pendulum, 

 

2 2

, gdzie

1
.

2

p w

w w w w w

I I I

I m R m d

 

 
      (9)

 

In the above equation for the total moment of inertia I of the rod with weight, mw is the mass of the  

cylinder, Rw is its radius, and dw is the distance between the pivot point and the centre of mass of the  

cylinder.  
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Tasks 

 Using the program provided, record the time dependence of the amplitude of one of the 

pendulums with the cylinder weight at the bottom end of the rod. Set the pendulum in motion with 

the maximum possible amplitude and let it stop. With the help of cursors read off the frequency f 

of the pendulum oscillations at different amplitudes α0andmake the plot of f(α0).Find out at 

which amplitude αgthe approximation of small amplitudes ensures the acceptable accuracy. The 

following measurements make at the selected or smaller amplitude ag. 

 Changing the positions of the cylinders on the rods, on one rod from bottom up and on the other 

from top down, find the frequencies of free oscillations of the pendulums as a function of dw. 

 Measure the dimensions of the rods, positions of the holes in which cylinders can be attached and 

the dimensions and mass of the cylinder weights. Knowing that the directing moment of the 

pendulum with a cylinder weight D is a sum of the directing moments of the rod and the cylinder, 

calculate the frequencies of free oscillations of the pendulum for three different positions of the 

weight and compare the results with experimental data.  

 

2. Normal oscillations. 
 

 

If the two pendulums are connected by a spring, in the way presented in Fig. 2, we get a 

system of two coupled pendulums. 

  

Figure 2. A system of two coupled pendulums.  

 

This system has two degrees of freedom which are the amplitudes of the two pendulums 1 and 2 (in 

Fig. 2 the angles have positive signs according to the convention assumed in Fig. 1). It should be 

remembered that the spring must be attached in such a way that it would be in equilibrium for the two 

pendulums in equilibrium.  The system is called a sympathetic pendulum and it behaves in the same way 

as a system of two balls connected through a spring with each other and with the neighbouring walls, 

which is the simplest model of two atoms linked by a bond inside a molecule or a crystal. Although the 

motion of a sympathetic pendulum is complex, it can always be described as a superposition of two 
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independent harmonic motions (because of the two degrees of freedom). These motions, known as the 

normal oscillations, are independent and involve simultaneous oscillations of both pendulums in one or 

the other type of motion. The normal oscillation is the one in which all coordinates (in our experiment 1 

and 2) change with the same frequency and with the same or exactly opposite phase. The equation describing the 

normal oscillations is: 

 

)cos(1   tA , )cos(2   tB .     (10) 

 

The normal oscillations have strictly defined frequency and amplitude. Before we find them, we 

have to define the equation of motion for the sympathetic pendulum, which is different from eq. (5) 

because of the presence of a spring. In the system of pendulums from Fig. 2, besides the gravitational 

force also the restoring force, acting in the horizontal direction, contributes to the moment of force M 

(4). The force depends on the state of the spring (extension/ contraction x) and the elasticity constant k, 

sF k x   . Let’s consider one of the two pendulums. A change in the length of the spring relative to its 

length at equilibrium depends on the amplitudes of the two pendulums in the following way: 

 

12 sinsin  ddx        (11) 

 

The moment of the restoring force is: 

 

2

1 2 1 1sin( ) (sin sin )cos
2

s sM dF kd


             (12) 

 

and the moment of the gravitation force according to eq.(4) is 

 

1sinGM mgr          (13)
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The net moment of force is thus equal to the sum of MS and MG. Taking into account the 

approximation of small amplitude, sin(sin(,cos(,cos(, we can 

derive the equations of motion for both pendulums, as we have done earlier. We get: 

 

2
21
0 1 22

( ) 0
d

H H
dt


            (14) 

2
22
0 2 12

( ) 0
d

H H
dt


            (15) 

 

The frequency of free oscillations 0 is assumed to be the same (the pendulums are loaded 

with the same weights), while 
2kd

H
I

 . Equations (14) and (15) describe the oscillations of 

both pendulums which can be decomposed into normal oscillations (10). In order to 

determine the frequencies and amplitudes of normal oscillations, the equation for 1 and 2 

(10) is substituted to (14) and (15) to get the set of equations 

 

   

   

2 2

0

2 2

0

sin 0

sin 0

H A HB t

HA H B t

       
 

        
 

     (16) 

 

This set of equations (16) must be satisfied for each moment, so  

 

 

 

2 2

0

2 2

0

0

0

H A HB

HA H B

    

     
      (17) 

 

Set (17) has a non-trivial solution when the determinant of the matrix of coefficients is zero. 

 

2 2

0

2 2

0

0
H H

H H

   


   
     (18) 

 

Equation (18) leads to a quadratic equation: 

 

4 2 2 4 2

0 02( ) 4 0H H              (19) 
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whose solutions are: 

 

01  
       (20)  
2

2 0 2H   
      (21) 

 

Substituting the frequencies (20) and (21) to equations (17) we realise that 

 

for 01     B1 = A1,          (22) 

for 2

2 0 2H      B2 = -A2     (23) 

 

Equation (22) means that if the two pendulums oscillate in the same frequency equal to the 

frequency of free oscillations, then the phases of their motions are the same and the 

amplitudes of their oscillations are the same. Equation (23) describes the situation when the 

frequencies of the pendulums oscillations are different from that of free oscillations, 

amplitudes of the two pendulums are the same but the phases are the opposite. As mentioned 

before, any oscillations of coupled pendulums can be described as a superposition of 

normal oscillations. Using equations (10), (22) and (23) we get 

 

)cos()cos( 2221111   tAtA           (24) 

 

)cos()cos( 2221112   tAtA           (25) 

 

The normal oscillations of pendulums can be obtained by choosing proper initial conditions. 

For the normal oscillations type I, eq. (22), the two pendulums should be set in motion with 

the same initial amplitudes. For the normal type II, eq.(23), the two pendulums should be set 

in motion with the same initial amplitudes but in the opposite directions.  

 

Tasks: 

 Using the available program, measure the time dependencies of two coupled 

pendulums of known frequencies of free oscillations, moments of inertia and directing 

moment of the pendulum, for a few different coupling constants determined by the 

distance between the spring and the axis of rotation. . 

 Read off the frequencies of normal oscillations of the sympathetic pendulum and 

compare with the calculated values. 

 In order to do this you have to determine experimentally the elasticity constant of the 

spring, k. You can do this with the use of a weight of a known mass, thread or a piece 

of wire for fastening of the weight to the spring and a ruler. 
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4. Beats . 
 

Any oscillation can be described knowing its initial conditions. Let’s assume that only one 

pendulum is set in motion with the initial amplitude of 1(0) = 0. Let at t =0, the initial 

phase be 1 = 2 = , 2=0, and the initial velocities of the two pendulums be zero, 

1

( 0)

0
t

d

dt 


 , 2

( 0)

0
t

d

dt 


 . Substituting these values to equations (24) and (25) gives: 

 

1 0 1 2(0) ,A A            (26) 

 

2 1 2(0) 0 ,A A          (27) 

 

Having added or subtracted equations (26) and (27) by sides, we get 0
1 2

2
A A


  . Finally, 

inset these values to equations (24) and (25), which gives the following relations: 

 

 0 1 2 1 2
1 1 2 0cos cos cos cos

2 2 2
t t

    
           (28)

 0 1 2 1 2
1 1 2 0cos cos sin t sin

2 2 2
t t t

    
           (29) 

 

Substituting  

1 2

2
rś

 
    , 1 2

mod
2

 
        (30) 

 

we get  

 

     1 0 mod modcos cos ( )cosśr rśt t A t t       ,   (31) 

 

The two pendulums oscillate with the same average frequency śr, and their amplitudes are 

modulated with the frequency mod, and their phases are the opposite. This phenomenon is 

called beats. The single cycle in which the maximum amplitude of one pendulum is passed to 

the other pendulum which goes from zero amplitude to its maximum amplitude and then the 

energy is transferred back to the first pendulum until it reaches the maximum amplitude 

again, is called a single beat. The time period of completion of this cycle is called the period 

of beats and its reciprocal is the frequency of beats.  
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Tasks 

 Using the available program, measure the time dependence of beats a system of two 

coupled pendulums after one of them has been put in motion.  

 With the help of cursors, find the frequency of beats and the average frequency of 

oscillations of the two pendulums.  

 Set the system of pendulums in motion so that they would perform the first and then 

the second normal oscillations. Record the time dependencies of the amplitudes of 

the two pendulums. With the use of the available program find the frequency of each 

normal oscillation.  

 Calculate the frequency of beats and the average frequency of oscillations of both 

pendulums using the measured frequencies of both normal modes. Compare the 

results.  
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